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Decomposition of a 2D
assembly drawing into 3D part

drawings

Masaji Tanaka*t, Kenzo lwamaz, Atsushi Hosoda§ and Tohru Watanabe§

This paper shows a method of automatically decomposing a 2D
assembly drawing into 3D part drawings using a set of solid
element equations. Solid elements are virtual elements that are
constructed from orthographic views and which become the
components of solid models of all of the parts described in the
orthographic views. This method organizes the relationships
between a 2D assembly drawing and solid elements as a system
of solid element equations that can classify solid elements into true
elements of some parts and false elements that do not actually exist
in any parts. The method generates ways of solving the system of
solid element equations and the combination of true elements. If
there is more than one solution, the method can generate all of the
solutions. This method was tested on various 2D assembly
drawings. © 1998 Elsevier Science Ltd. All rights reserved

Keywords: assembly drawing, part drawing, orthographic
view

INTRODUCTION

CAD/CAM systems have advanced automated design and
manufacturing. In particular, solid modeling enables the
manipulation of 3D models of parts. However, much
information regarding design and manufacturing is still
represented by 2D drawings. Various input devices provide
engineers with choices in 2D drawings and improve
flexibility for designers. In general, product design proceeds
from conceptual to detailed design. Designers have been
known to first draw 2D assembly drawings of products and
then draw each 2D part drawing, despite the fact that there
are methods for designing products by composing designed
parts in CAD systems by superimposing layers of 2D part
drawings. The 2D part drawings are transformed into solid
models for CAM systems to generate NC programs and
assembly planning among other applications. It is routine
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and takes a lot of time to decompose 2D assembly drawings
into 2D part drawings and transform them into solid models.
Therefore, these transformations are very often processed
by operators other than designers.

This paper shows a method of automatically decompos-
ing a 2D assembly drawing into 3D part drawings. A method
is developed here to automatically construct solid models
from orthographic views !, and the method is extended for
the decomposition. Though there are many methods to auto-
matically construct solid models from orthographic views”,
nobody has attempted to construct solid models of more
than one part from orthographic views to the knowledge
of the authors. Nevertheless, such decomposition is import-
ant to designers for the following reasons:

(1) It takes a lot of time to draw each 2D part drawing from
a 2D assembly drawing in proportion to the number of
parts.

(2) If operators rather than designers process the decom-
position, the operators may fail to correctly recognize
each part of the 2D assembly drawing.

In this method, wireframe models, surface models and
solid elements are constructed from orthographic views in
order. A solid element is a closed region of faces that are
elements of the surface models. Solid elements become the
components of the solid models of all of the parts. The
method presented here generates solid models of each part
by classifying solid elements into elements of some parts
and false elements that do not actually exist in any parts. If
there is more than one solution, this method can generate all
of the solutions. The method was implemented on a PC and
tested on various 2D assembly drawings. Four examples are
shown in this paper.

The domain of the 2D assembly drawings is limited
to orthographic views consisting of front, top and side
views, and cross-sectional views. Also, the types of faces
are limited to planar, cylindrical, conical and spherical
faces.

TERMINOLOGY
Drawing layout
The input to this method consists of orthographic views of

an assembly that include cross-sectional views and part
numbers, each of which is given to some surfaces in
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Figure 1 Example 1

the orthographic views. The coordinate system of the
front, top and side views are x—z, x—y and y—z. Figure I
illustrates Example 1 which consists of two parts (part 1 and
part 2).

Geometric elements

2D vertex and 2D edge
2D vertices are defined in 2D drawings as the following
three types:

(1) crossing points of straight lines and arc lines;

(2) tangency points between straight lines and arc lines, and
tangential points between arc lines;

(3) maximum or minimum points of arc lines in the vertical
or horizontal directions in orthographic views, and the
center points of circles.

The 2D edges are defined in the 2D drawings as the
following two types:

(1) straight lines and arc lines existing between two 2D
vertices;

(2) vertical or horizontal straight lines that correspond to
2D vertices selected from tangency points and maxi-
mum or minimum points described in the other views.
Those edges are called silhouette edges.

Figure 2 illustrates all of the 2D vertices and 2D edges in
Example 1.

Vertex and edge
A vertex is defined from the three 2D vertices in each view.
Let a front 2D vertex be (fx.fz), a top 2D vertex be (#x,fy) and
a side 2D vertex be (sy,sz). If fx = tx, ty = sy and fz =57, 2
(3D) vertex (fx,sy,fz) can exist as a virtual vertex of the
solid.

An edge is defined from two vertices. Let the two vertices
be (x1,yl,z1) and (x2,y2,z2). If a 2D edge (x1,z1)—(x2,z22)

D

Figure 2 The 2D vertices and 2D edges in Example 1
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Figure 3 The vertices and edges in Example 1

exists, orxI = x2, zI = z2 and the 2D vertex (x/,z/) exists in
the front view, (xI,yl,z1)—(x2,y2,z2) has the projection on
the front view. In the ‘same way, if an edge (xI,yl,z1)—
(x2,y2,z2) has projections on each view, the edge can exist
as a virtual edge of the solid. Figure 3 illustrates all vertices
and edges obtained from Figure 2.

2D face and face

Except for the silhouette edges, a 2D face is a closed loop of
2D edges. Figure 4 illustrates all of the 2D faces obtained
from Figure 2. A face is a closed loop of edges. Figure 5
illustrates all of the faces obtained from Figure 3.

Solid element

A solid element is a closed region of faces. Figure 6
illustrates all of the solid elements (57,52,53) obtained from
Figure 5. As aresult, part 1 is S7 and part 2 is S2. Therefore,
S3 does not actually exist. A solid element that actually
exists is called a true solid element, and a solid element that
does not exist is a false solid element. S/ and S2 are true
solid elements, but S3 is a false solid element.

SOLID ELEMENT EQUATION
Background

The method presented here classifies solid elements into
true and false elements of some parts. The simplest way to
classify them is to develop all of the combinations of the
solid elements and project each of them onto 2D views to
check if the projection results in the 2D assembly drawing.
However, using this method, an explosion of the amount of
processing information occurs. When the number of parts is.
M and the number of generated solid elements is NV in a 2D
assembly drawing, the number of all combinations of solid
elements is (M + 1)". For example, if M = S and N = 25
(Example 4, see Figure 21), the number of combinations is
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Figure 4 The 2D faces in Example 1
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Figure 5 The faces in Example 1

6% = 2.843 X 10". To avoid this information explosion,
the relationships between a 2D assembly drawing and solid
elements are organized as a set of solid element equations as
described in the following.

Four conditions

When the direction of a view in a 2D assembly drawing is
observed, a 2D face corresponds to the face of one solid
element. For example, Figure 7 illustrates the number of
corresponding solid elements on each 2D face in Example 1.
The following three conditions are obtained from the
relationships of the correspondences.

Solid_edge condition

If a 2D edge existing between two 2D faces is a solid line,
the corresponding two faces of two solid elements must not
be tangential to each other at the edge that corresponds to
the solid 2D edge except where the two solid elements are
not both elements of a part. If the two faces are the same, the
solid element is a false element. If the two faces are
tangential to each other, the two solid elements are neither
both true nor both elements of a part. When the two solid
elements are Sx and Sy, the relationship is expressed as a
Solid_edge_condition, Sx X Sy.

Dotted_edge_condition

If a 2D edge existing between two 2D faces is a dotted line,
the corresponding two faces of two solid elements must be
tangential to each other at the edge that corresponds to the
dotted 2D edge. Since the two faces are tangential to each
other, the two solid elements are both elements of a part or
both false. If the two faces are not tangential to each other,
the two solid elements are not both true. For a dotied 2D
edge to exist, solid elements must exist that make edges
corresponding to the dotted 2D edge. When the two solid
elements are Sx and Sy, the relationship is expressed as a
Dotted_edge_condition, Sx — Sy.
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Figure 6 The solid elements in Example 1
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Figure 7 The number of solid elements on each 2D face in Example 1

Existence_condition

For each 2D edge, there must be one true solid element in all
of the solid elements that have edges corresponding to one
2D edge. In addition, for each 2D face marked by some part
numbers, there must be one solid element in all of the solid
elements that have faces corresponding to one 2D face
marked by the part number.

A system that represents all of the relationships of solid
elements is called the ‘X * and * — * system of solid element
equations. The method classifies solid elements using solid
element equations and may also generate a part that consists
of two or more separate solids by applying the three con-
ditions Solid_edge_condition, Dotted_edge_condition and
Existence_condition. Therefore, the following condition is
added.

Mass_condition

Solid elements that form a part cannot be separated into two
or more solids, nor can the solid elements be connected
simply through vertices or edges. This condition is called
the Mass_condition.

( START )

1)Find tr.
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| 3)Apply
all cond.

4)Unsatisfied
cond. exist

5)Drawing
yes| erTor

7)Make
ho | solutions

6)Undecided
SE exist

8)Make
combinations

Figure 8 The search algorithm used to solve a set of solid element
equations
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Figure 9 Example 2

Three conditions related to 2D edges are necessary to
establish the correspondence between a 2D assembly draw-
ing and the projected drawing of solution solids. When one
picks up any solid line segment in any view, one will find
the condition (Solid_edge_condition) between two solid
elements. The same can be said of any dotted line
segment (Dotted_edge_condition) and of any line segment
(Existence_condition). Mass_condition is a necessary
condition to generate real solids. On the other hand, steps
6—8 of the search algorithm described below provide a suffi-
cient condition for the 2D edges in 2D drawings. Since the
algorithm generates all of the possible combinations of the
true solid elements, every edge in each combination has a
corresponding 2D edge (solid or dotted) in the original 2D
drawing.

In Example 1, S X S2 is obtained from the top view, and
S1 X §2, §1 X S3 are obtained from the side view. As a
result, §2 X S1 X 83 is the solid element equation. It is
found that S7 is an element of part 1, and S2 is an element of
part 2 due to the existence of two 2D faces marked part 1
and part 2. S3 is false due to S/ X §3 and the
Mass_condition. As a result, part 1 is S and part 2 is S2.

Search algorithm

Figure 8 illustrates the search algorithm used here to solve a
system of solid element equations. The input is a set of
conditions that consist of every Solid_edge_condition from
the solid 2D edges, every Dotted_edge_condition from the
dotted 2D edges and every Existence_condition from the 2D
edges and part numbers on some 2D faces (the proposed
program gets the part numbers). The abstract of the
algorithm is as follows:

(1) Find true or false solid elements.

Find solid elements (SE) that are trivially false by
Solid_edge_conditions and Dotted_edge_conditions,
and find true solid elements by Existence_ conditions.

(2) True solid elements exist.

If true solid elements do not exist, develop combina-
tions of all solid elements.

Figure 10 The wireframe model in Example 2
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Figure 11 The solid elements in Example 2

(3) Apply all conditions.

Apply  Solid_edge_conditions and Dotted_edge_
conditions to find true or false solid elements. After
the application of these two kinds of conditions,
select a false element and check to see if there is a
true element where the true element has an edge of
the false element. Finally, apply Mass_condition to
check and sec if a part includes more than one separated
solid.

(4) Unsatisfied conditions exist.

If unsatisfied conditions exist, the drawing must have
mistakes.

(5) Drawing error.
Output a message ‘Drawing error’.
(6) Undecided solid elements exist.

If solid elements that are undecided in terms of belong-
ing to parts or truthfulness exist, combine them.

(7) Make solutions.

Solutions are formed by connecting the solid elements
in each part.

(8) Make combinations.

If the number of parts is M and the number of undecided
solid elements is N, make (M + 1) combinations.

Undecided solid elements cause the generation of multi-
ple solutions. Therefore, if designers introduce cross-
sectional views into 2D assembly drawings to reduce the
number of cases where one solid element can be in more
than one part, the number (M 4+ l)N can be minimized.

EXAMPLES

An example of two parts

Figure 9 illustrates Example 2 which consists of two parts.

S41 851 86
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s1|s2| 832

S1|s2|s3 §3 | S6

S7' 88! 89 89 !S12

Figure 12 The number of solid elements on each 2D face in Examplie 2
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Figure 13 The solid element equation in Example 2

Figures 10—12 illustrate a wireframe model, solid elements
and the number of solid elements on each 2D face.
Figure 13a illustrates the solid element equations in each
view. S6 is marked by part 1, and S3 is marked by part 2 on
the top view. The three equations can be connected to form
one equation as in Figure 13b by SI, $2, §3 and S6 which
are common elements in the three views. The equation can
be further translated into that in Figure 13c¢ (for example,
either SI X 82 or SI X S4 can be removed because of
§2 — 85 — S§4).

The solution is calculated as shown below. Since there are
top and horizontal 2D edge of the 2D face corresponding to
S2, and bottom and horizontal 2D edge of 2D face corre-
sponding to S9 in the front view, S2, §5 and §9, S12 are true.
Therefore, S2, S4, S5, S6, §7, S8, §9, S12 are true. Since
S6 is true, S2, §4, S5, S6 are elements of part 1. So S7, S8,
59, S12 are elements of part 2 because of S6 X S7, and S1,
S3 are false. S10 and SI] are undecided solid elements.
Each of them is an element of part 1 or part 2 or is false.
When all conditions are applied to 32 = 9 combinations,
four solutions are obtained as in Figure 4.

Actually designers draw 2D assembly drawings as unam-
biguously as possible. In Example 2, designers can draw
cross-sectional views. When section AA’ is added as in
Figure 15a, the relationships at section AA' are obtained
as in Figure 15b and ¢ by cutting solid elements at the
cross-section. As a result, S10 is false and S/ is an element
of part 1. Therefore, Figure 14a is the solution.

A linear table

Figure 16 illustrates Example 3 which shows a linear table.
Figures 17-19 illustrate a wireframe model, solid elements
and the number of solid elements on each 2D face. The solid
element equations are $2 X S5, 83 X S8 and §2 X S11 that
are obtained from Dotted_edge_conditions. When Existen-
ce_conditions are applied to the solid elements, it is found
that §1 is an element of part 1, S9 is an element of part 2, S3
is an element of part 3, S6 is an element of part 4, 52 is an
element of part 5, and S4, §7, SI10, S12 are true.

Since S4 only makes contact with S5 by a face, S5 is not
false by applying the Mass_condition. Since S5 makes con-
tacts with S4 and S6, S4 and S5 are elements of part 4. Since
S117 is an element of part 1 or false, S/0 and SI2 are ele-
ments of part 1. As a result, the undecided solid elements are
S7, 88 and S11.

S7 can be an element of parts 2, 3 or 4. S8 can be an
element of parts 2 or 4 or is false. S17 can be an element of
part 1 or is false. Therefore, 3 X 3 X 2 =18 combinations
are candidates for the solutions as (57,88,511) = {(2,0,0),
(2,0,1), (2,2,0), (2,2,1), (2.4,0), (2,4,1), (3,0,0), (3,0,1),
32,00, (3,2,1), 3.4,0), (3.4,1), 4,0,0), (4,0,1), 4,2,0),
4,2,1), (4,4,0), (4,4,1)} (false is zero). Since the combinations

of (2,0,0), (2,0,1), (2,4,0), (2,4,1), (3,4,0) and (3,4,1) are not
consistent with the Mass_condition, the remaining 12 com-
binations become candidates of the solutions.

However, if (57,58,511) equals (2,2,0) or (2,2,1), it is
impossible to assemble parts 2 and 3. As a result, 10 solu-
tions are obtained as in Figure 20. In this way, assembly
knowledge may reduce the number of possible solutions.
Unlike knowledge about the functions of parts, some assem-
bly knowledge is already formalized to generate assembly
sequences (for example, see Refs 4%} and this knowledge
can be integrated into the method.

An example of five parts

Figure 21 illusirates Example 4 which consists of five parts.
Figures 2224 illustrate a wireframe model, solid elements
and the number of solid elements on each 2D face. Figure
25 illustrates the solid element equations in each view.
However, there are a few false elements such as SI8 X S18
in the top view. These trivial false elements are S/ 0, S12,
S13, SI14, SI18 and S21. After those false elements are
removed, Figures 24 and 25 change into Figures 26 and 27
(Figure 27b is translated from Figure 27a).

1t is found that S, S2, 83, 89, S11, 817, S19 are elements
of part 1, $4, S6, S7, S8 are elements of part 3, 815 1s an
element of part 4, S22 is an element of part 2, S25 is
an element of part 5, and S20, $24 are true by the
Existence_conditions. Since S5 only makes contact with
52, 84 and S6, S5 is false, and S25 is part 5, but SI6 is not
an element of part 3. These three relations are found by
Solid_edge_conditions.

As a result, SI6, S20, $23 and S24 are undecided

| HI@

Figure 14 The solutions of Example 2
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Figure 15 The usage of a cross-sectional view in Example 2

Figure 18 The solid elements in Example 3
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Section AA’
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elements. Thus, 4 X'4 X 5 X 4 — 60 = 260 combinations
are candidates of the solutions (reduced by 60 due to S/6 X
S24). By applying all of the conditions to the combinations,
five solutions are obtained as in Figure 28.

DISCUSSION

The method proposed here is based on research of
automatically constructing solid models from orthographic
views of one solid. The research was initiated by Idesawa bl
He made a wireframe model and a surface model, and
introduced the generation method of solids. Wesley and
Markowsky ’ proposed virtual blocks which are called solid
elements. Though their method is applied only to planar
faces, Sakurai and Gossard 8 extended the method on order
to apply it to curved faces. A method to construct solids
using solid element equations 12 was also proposed by the
authors. Though this method uses solid elements, it is based
on a new idea described in the following paragraph.

If the lines drawn are all straight and vertical or horizontal
in orthographic views, it is possible to translate these three
views into three lattice faces, whose outlines are all

$2 il
s4 |  s2 S6
S2
S1
.52 _ 53
| s4 | sz SB
S N
s10 | 52 I3V e

S1

[ s1 ]

Figure 19 The number of solid elements on each 2D face in Example 3
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Figure 20 The solutions of Example 3

rectangles, by extending the lines drawn. A matrix of cubic
elements is made from those three lattice faces. The rela-
tionships between the 2D faces and the faces of the cubic
elements are trivial, and the solutions are simply obtained as
combinations of the cubic elements.

Figure 29 shows an example of the application of a
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Figure 21 Example 4
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matrix of cubic elements. Figure 29a illustrates one part
drawing, which can be translated into three lattice faces as
in Figure 29b. These faces form the matrix of cubic ele-
ments as in Figure 29c. From the figure, one is able to
observe that both S3 and S4 cannot be true in the top
view, and that both S5 and S6 are true or false in the front
view. In this way, one can extract all of the relationships
between the 2D faces and the cubic elements that are
described as in Figure 29b and d by using the 2D edge
conditions. Figure 29d can be translated into Figure 29e.
By applying Existence_conditions, S1, S2, 54, S8 are false,

Figure 22 The wireframe mode! in Example 4
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Figure 24 The number of solid elements on each 2D face in Example 4
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Figure 25 The solid element equation in Example 4
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and S5, S6 are true. Since SI is false, S3 is true by
Existence_conditions. S7 is true by a Dotted_edge_
condition. As a result, the solution is constructed of S3,
S5, S6, S7 as in Figure 29f. However, this method can be
applied only to orthographic views that can be translated
into lattice faces. Therefore, solid elements are adopted to

. deal with various shapes of solids.

Since solid element equations directly represent the
semantics of every line segment in every orthographic
view, it is simple to deal with the cases where more than
one part is drawn and/or cross-sectional views are drawn in
the orthographic view. However, it is not clear whether or
not previously proposed methods can be easily extended
to be applied to construct more than one part from
orthographic views with cross-sectional views.

Solid element equations can also quickly determine true
or false solid elements and find solutions because com-
binations of solid elements are employed with only

S17X 820 — 820X §22 — S22 X S19

| X X |
S9 S15— 815 S11
| X X |

S1—82 —82—82 — 82— 83

@
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@
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S1—82— 83— 89 — S11— S17— S19

S5 X
S4— S6— 87— S8 X S16 X S24
S15
+ X + @
S25
é $22<(2)
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Figure 27 The modified solid element equation in Example 4
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Figure 28 The solutions of Example 4

undecided solid elements. Previously proposed methods for
constructing solid models from orthographic views that use
solid elements basically employ a mechanism of searching
for suitable combinations of all of the elements (for
example, see Refs "77'%).

Sub-views such as cross-sectional views as in Example 2,
and assembly knowledge as in Example 3 are effective
for reducing the number of solutions. Additionally, knowl-
edge of design is also effective. In Example 3, if 10, S11
and SI2 represent a rail, it is found that S/ is not false.
Therefore, the use of design knowledge is a subject for
future research.

CONCLUSION

A method was developed for automatically decomposing a
2D assembly drawing into 3D part drawings by a system of
solid element equations. Every solid element is classified
into one of three types: a true element of a part, a false
element and an undecided element. Though the amount of

processing information to exponentially classify all the solid
elements grows in proportion to the number of undecided
elements, the solid element equations can minimize the
number of undecided elements. The proposed method was
tested on various 2D drawings, and it was shown that this
method can generate all of the possible solutions. Cross-
sectional views and assembly knowledge were shown to be
capable of reducing the number of solutions.
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